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POLYNOMIAL APPROXIMATIONS OF FUNCTIONS 
WITH ENDPOINT SINGULARITIES 

AND PRODUCT INTEGRATION FORMULAS 

GIUSEPPE MASTROIANNI AND GIOVANNI MONEGATO 

ABSTRACT. Several problems of mathematical physics lead to Fredholm integral 
equations of the second kind where the kernels are either weakly or strongly sin- 
gular and the known terms are smooth. These equations have solutions which 
are smooth in the whole interval of integration except at the endpoints where 
they have mild singularities. In this paper we derive new pointwise and uniform 
polynomial approximation error estimates for that type of function. These esti- 
mates are then used to obtain bounds for the remainder terms of interpolatory 
product rules, based on the zeros of classical Jacobi orthogonal polynomials, 
that have been proposed for the discretization of integrals of the form 

fl 

] k(x, y)f(x)dx, 

appearing in the integral equations mentioned above. 

1. INTRODUCTION 

Several problems of mathematical physics lead to Fredholm integral equa- 
tions of the second kind, 

(1.1) ~~~u(y) + A k (x, y) u(x) dx = h (y), 

where the kernel k(x, y) is either weakly or strongly singular. For a few ex- 
amples of such equations see [1, 6, 7, 10, 13]. When the input functions h(y) 
are smooth, and the kernels k(x, y) satisfy certain conditions, these equations 
have solutions which are smooth everywhere in (-1, 1) except at the endpoints 
+1. 

Among the numerical methods proposed to solve such equations we recall 
the Nystrom methods, which are based on quadrature formulas. In particular, 
if we decide to discretize the integral 

k(x, y)u(x) dx 
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by a product rule of interpolatory type, which integrates exactly the singular 
terms that may be present in k(x, y), then in order to derive accurate conver- 
gence estimates for the quadrature rule it is important to take into account the 
precise behavior of u(x) in [-1, 1]. We recall that once the stability of the 
Nystr6m method has been proved, let us say, in C[- 1, 1], then the (uniform) 
norm of the error associated with the Nystr6m interpolant is bounded, up to a 
constant factor, by the norm of the quadrature error. 

For a few examples of kernels such as Ix - yIv, -1 < v < 0, and log Ix-YI, 
explicit expansions of u(x) in [-1, 1] as a finite linear combination of singular 
terms plus a function which is smooth in [-1, 1] are known (see [8, 18]). 
Since the singular terms of such expansions are of the form (1 ? x)k(l+v) and 
(1+x)i log'(l1x) , I < j , k , j, I = 1 , 2 , ... , in [2, 12, 14] it has been sufficient 
to consider the behavior of the quadrature rules when they were applied to those 
terms. 

There are however problems of type (1. 1) where the kernel k(x, y) is neither 
one of those above, nor a linear combination of them such as in [12]. Consider 
for instance a problem where k(x, y) = Ix - yIv log Ix - y I. In these situations 
we have not an explicit expansion of u(x) in [-1, 1]. Indeed, we can only 
state the following (see [22]): 

Theorem 1. Consider (1.1) with k(x, y) k(Ix-yI) I and k(1+t) ECq-l( 1, 1] 
and h E Cq[_ 1, 1] for q > 1 . Further assume that 

k(0)(1 + t)l < yi(l + t) -a-i , -1 < t < 1, i = O, 1, ...,5 q - 1,5 

10()(1 + t)l > 6Si(l + t)-ao-i, -1 < t < to, i O 1, ...,5 q - 1,5 

where a, ao are real constants such that 

0< a< 1 and -1 <ao?<a, 

and yi, 5i are some positive real constants and -1 < to < 1 . If the homogeneous 
equation corresponding to ( 1.1) has in C[- 1, 1] only the trivial solution, then 
equation (1.1) has a unique solution u(x) E C[-1, 1] n Cq(_l, 1), and 

IU(i)(X)I < in[(l + X)-a-i+l + (1 X)a+l], -1 <x < 1, i =0, 1, ... q, 
u(i)(x) = u(- 1)k(i-l)(1 + x) - u(l)k(i-l)(1 - x) + vi(x) , i = 1 , . .. , q, 

where ?ib, i = 0, 1, ... , q, are positive constants, vi E Cq-i(- 1 1), and 

lim vj(x) = 0 , lim vi(x) = 0 
X-+- 1+ k(- ')(1 + x) x-+1- k(-1)(1 - x)- 

Notice that this theorem states that for the class of kernels considered, the 
corresponding solutions u(x) belong to C[-1, 1 ] nfCq( 1, 1), q > 1; further- 
more, 

lim (lx)iu(i)(x)=O, i=1, ..., q. 

By continuity we can thus define the functions (1 - x2)iu(i) (x) also at x = +1, 
so that (1 -x2)iu(iX) E C[-1, 1], i = 0, 1, .. ., q, and set u E CO[-1, 1], 

IIn [22] the authors state that without any serious difficulties one can generalize this theorem to 
the case of kernels k(x, y) = m(x, y)k(lx - yl) or k(x, y) = m(x, y)k(x - y), with m(x, y) 
smooth. 
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with 

Cp[-l, 1] = {g E Ll(-1, 1): (1-x2)iPg(i)(X) E C[-1, 1], i= 0, 1,..., q}. 

We also remark that in the particular case examined in [2] there were no 
advantages in writing the function u(x) in the form (1 - x)a( 1 + x)flv(x) and 
considering w(x) = (1 -x)a( 1 +x)8 as a weight function, unless v(x) was itself 
of class Cq [-1 1]; but this is not the case for the equations we are considering. 

Finally, we recall that in the case of certain classes of Mellin convolution 
equations of the form (1.1) (see [1, 7, 13]) invertible in L?(-1, 1), when2 
h E Cpq[-l, 1] + rId for some q > 1 and p > O, where 

Cpq[- 1 1] = {g E LI (- 1 1): ( - X)'-Pg(')(X) E C[- 1 1], i = 0,5 1 , ...,5 q}, 

wehave uECpq[-1, l]+Id. 
In this paper we are concerned with the discretization of integrals of the form 

(1.2) J k(x, y)f(x) dx 

by means of quadrature formulas of interpolatory type based on the zeros of Ja- 
cobi orthogonal polynomials. These rules integrate exactly the singular compo- 
nents of the kernels (see, for example, [2, 10, 12]). To derive accurate uniform 
convergence estimates for these quadratures, we need to take into account the 
precise behavior of f(x) in the interval of integration. This means that, if we 
refer to the cases mentioned in this introduction, we need to consider functions 
f(x) E Cp[-1, 1] or f(x) E Cpq[-1 , 1] ,with p > 0 and q > p. 

The starting point of our analysis is the search of accurate polynomial ap- 
proximations for functions f(x) of the type above. 

Throughout this paper the symbol " c " present in the bounds we state or 
derive will stand for a positive constant taking different values on different 
occurrences. 

The well-known Jackson estimate 

(1.3) lIf-PmIIoo ?< cor(ff; m 1), 

where 
(Or(f; t) = Sup jIArfjj 1[_,I-rh] 

O<h<t 

and 
(Or(f; t) < Ctwr-i (f'; t) , 

for the uniform polynomial approximation of a continuous function on [- 1, ], 
is unsatisfactory when our function f has some kind of irregularities at the end- 
points ? 1 , but is smooth everywhere inside (-1, 1); the uniform bound (1.3) 
must take into account also the behavior of f(x) at ? 1. In such a situation 
estimates like those given in [5, ?7.2]: 

(1.4) Em(f)p Pinf = f-Pmlp < Cr (f , m )p , m > r, 
Pm EHrm 

where we assume f E LP(-1 1) , 1 < p < X0, q(x) = vfY7x, and where 

Zr(f m-.)p =rsup IIAsfIIP 
O<h<m-1 

2 rId denotes the space of polynomials of degree d . 
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appear more suitable. Incidentally, if in (1.4) we take r = 1, , 1 and 
p = 00, we obtain (1.3). We also recall (see [5, ?4.2]) that when f(r1)(x) is 
absolutely continuous in any [a, b] c (-1, 1) and llrf(r)llp < 00, we have 
cor (f; t) = O(tr); hence 

(1.5) Em(f)p = O(m-r). 

However, this too was not sufficient for the applications we have considered in 
[2] and [ 10]. In these papers we had to derive some new pointwise and weighted 
LI -polynomial approximation error estimates for the functions f(x) = (1 - x)a 
and f(x) = (1 - x) h(x), I1(1 -X)kh(k) (X) ?<c, k=0, 1, .. ., q, respectively. 

Results recently obtained by V. Totik in [21], although they could be applied 
to the function f(x) = (1 - x)a above, when a > 0, will not be sufficient for 
our present purposes. Indeed, in that paper Totik, proving a conjecture stated 
in [1 1], has shown that when the given function f(x) E Cp [- 1, 1] is analytic 
in D = {zj dist(z, [- 1, 1 ]) > c dist(z, 1 )} there exists a sequence of algebraic 
polynomials {Pm (x)} such that at each point x E (-1, 1) of analyticity 

IPm(x) - f(x)I < cf,xe m , 
where Cf, x is bounded in each closed subinterval [-1, c] c [-1, 1), and 

lif - PmIloo < cojj(f(2"); mr2) 

where 
COD(g; t) = SUp{1g(U) - g(v)I: U, V E D and Iu - vl < t}. 

In the next section we generalize our polynomial approximation presented in 
[2] and [10] to include functions of class Cp[-1, 1] and Cp[-1, 1], respec- 
tively, with p an integer > -1 and q an integer > max{0, p} . 

In particular, we derive some pointwise and uniform, as well as certain 
weighted LI , polynomial approximation error estimates for functions with the 
properties stated above. These estimates appear to be new and of interest. They 
are useful to obtain error bounds for our quadrature rules. As an example of 
how one can proceed, in ?3 we will first consider the case Ik(x, y)I < clx - yv 
-1 < v < 0; then we will examine the case 

k(x, y) =kF V) 1 _ , with k y < c, -1 <x < 1, IYI < 1, 

associated with the Mellin equations previously mentioned. 

2. POINTWISE AND UNIFORM POLYNOMIAL APPROXIMATION ERROR ESTIMATES 

Lemma 1 (see [4]). Let f(x) E Cr[_l, 1], r > 0. Then, for each integer 
m > 4r + 4 there exists3 an algebraic polynomial Qm(x) of degree m such 
that4 

r-k(2 ____ 

(2.1) lf(k)(x) - Qmk(x)| < c ( 1 x2) ) (r) 

-1 <x< 1, 

3And it is explicitly defined. 
4We recall that co2(g; 6) < 2co(g; 3). 
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for k = O, 1, ..., r, the constant c being independent of x, m, and f . 

Lemma 2. Let f(x) E Cr[-l, 1], r > 0. For each integer m > 4r + 4 there 
exists5 an algebraic polynomial Pm (x) of degree m such that 

(2.2) If(k)(x)-m < c (V Emr)(f(r)) -1 < x < 1, 

for k = 0, 1, ..., r, where Em-r(f(r)) denotes the uniform best polynomial 
approximation error (of degree m - r) associated with the function f(r)(x), 
-1 < x < 1, and c is independent of x, m, and f. 
Proof. Let 4m-r(x) be the (uniform) best approximation polynomial, of degree 
m - r, to f(r) . Furthermore, let qm (x) be a polynomial of degree m such that 

qm = ( m-r(x); we have 

Ilf(r) -r) = EmIr(f(r)). 

Since f - qm E Cr[- 1 1], by Lemma 1 we know there exists a polynomial 
Qm(x), of degree m > 4r + 4, such that 

If(k)(x) - q (x)-Qm (x)I c ( m ) -(02 (fr - qm); 

< c ( 
V ~ )- k Ilf(r) -q (r, = c( m )= Em-r(f(r)) 

for -1 < x < 1, k = 0, 1, ... , r, and where the constant c is independent 
of x, m, f . To obtain (2.2), we simply set Pm(X) = qm(x) + Qm(x). ? 

In the following we will need to consider the two auxiliary functions 

D(x) = (1 _ x)q-Pf(x), f E Cp1'[-1 1], 

?D(x) = (1-x)-fx, f E ';[-1, 1]. 

Notice that we have 

<t>()(l =Ofork=O,5 1, ...,5 q - p- 1 

and 
;5(k) (?l) =O for k = O, 1, ... q-p - 1. 

Then we have the following results. 

Theorem 2. Let f E Cp[-1, 1], p > -1, q > max{0, p}. Then there exists a 
sequence of algebraic polynomials tm(x) such that for all integers m sufficiently 
large 

(2.3) If(x) - tm(X)l < C02 1 2m ) (Vm ) (f )2P-e 

- 1 <X 1, 

5And it is explicitly defined. 
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if q < 2p (p > 0), and 

If(X) - tm(X)I < CW02 ((q) ; m ) (V7 m )+ 1 

-1 <x<1, 

when q > 2p + 1 . Furthermore, in this latter case we have 

(2.5) If(X)tm(X)I?<C w2(() XIm) 1-cm2 < X <1, 

if p = -1, and 

(2.6) fI(X) - tm(X)I < C02 (D x2) (v Z m )P 

1-cm-2 <x< 1, 

if p >O. 

Proof. From Lemma 1 we know that for each integer m > 4q + 4 there exists 
a polynomial Qm(x) of degree m such that 

(2.7) v (k)(x) _ Qk(x)I ? C ( 7) k (2 (q); V7 \/) 

k=0, 1,...,q. 

Moreover, since D(k)(i) = 0 for k = 0, 1, ... , q -p - 1, we also have 

Q(k)(1) = ?D(k)(1) =0 k = O, 1, ...,5 q -p- 1; 

hence, 
Qm(X) - (1 -X)qP tm+p-q(X). 

Inserting this latter expression into (2.7) with k = 0, and recalling that ?(x) = 

(1 - x)q-Pf(x), we obtain the inequality 

If(X) - tm+p-q(X)l < Cw2 (02 ; mf ) ( X)2p-q (Vm Y ) 

-1 <x< 1, 

from which we easily derive (2.3) and (2.4). 
To obtain the bound in (2.5), we use the relation 

= V1(x) - Qm(x)I _ ?I(q)(4x) -Q(q)l 1 
If(X) - tm-l-q(X)l= I (Dx)Qml - q x < X < X 

and apply (2.7). In the case p > 0, we proceed similarly to obtain (2.6). In 
particular, we start from the expression 

If(X) - tm+p-q(X)i = (-(5) - X< 1. 
(q -p)! 



APPROXIMATIONS OF FUNCTIONS WITH ENDPOINT SINGULARITIES 731 

Corollary 1. When in Theorem 2 we assume p > 0 and q > 2p + 1 we have 

(2.8) If(x) - tm(x)I < c0(wD(q) ; m 2) (+F1) -2p-1 

-1 <x <1; 

hence 

(2.9) If - tmIIoo ? w)D(q); m-2) 

Proof. When -1 < x < -1 + m-2, then (2.8) follows directly from (2.4). For 
1 - m-2 <x < 1 it is sufficient to recall (2.6) and write 

If(x) - tm(X)I < c? )(D(q); m-2) 

m2P 
<c(??((D); M-2) ) 

- qm-1 (N/ +~ M-I)q-2p-l 

When Ixl < 1 - m-2, from (2.4) we first derive 

f(X)-tm(X)I?C <u ( i ) q+ 
m 

then, since 
C(f;52) <w(f ;1) 

052 - b1 

whenever 62 >1 , by taking 62 = m1 -x2/m and '1 = m-2, and noting that 

x I 2 [ + v]-~ > 
I [~ + m 

-1 

we obtain 

If(X) - tm(X)Il < C((<) mI) (/jTj+M)q+ p 

hence (2.8). 
The bound (2.9) follows immediately from (2.8). o 

Theorem 2'. Let f E C [-1 1 ], p > - 1, q > max{0, p} . Then there exists a 

sequence of algebraic polynomials tm (x) such that for all integers m sufficiently 

large 

lf(X) - tm(X)l ?< C02 _;m_ ) ( M2p-q 

-1 <x< 1, 

if q < 2p (p > 0), and 

( f(X) - tm(X)j < ( (q); m mC(102 

-1 <x< 1, 



732 GIUSEPPE MASTROIANNI AND GIOVANNI MONEGATO 

when q > 2p + 1. Furthermore, in this latter case we have 
(2.5') 

lf(x) 
- tm(X) I 

< 
COJ2 

(4 ){ t 1 c- < 

if p = -1, and 

(2.6') If(x) - tm(X)I < CW02 1( - x ( qm; x) 

1 - cm-2 < lxl < 1 

if p > O. 

Proof. The proof is very similar to that of Theorem 2. El 

If in the proof of Theorems 2 and 2' we use Lemma 2 instead of Lemma 1, 
we can state the following alternative results. 

Theorem 3. Under the hypotheses of Theorem 2, for all integers m sufficiently 
large there exists a sequence of algebraic polynomials Vm (x) such that 

(2.10) If(x) - Vm(X)I < cEm-q(()j ( m ) X)2p-q 

-1 < x < 1, 

if q < 2p (p > 0), and 

(2.11 ) lf(x) - Vm(X)I < cEm-q (,)) (Di(q) ( qf) -2p' 
-1 <x< 1, 

when q > 2p + 1 . Furthermore, in this latter case, when p > 0, we have 

(2.12) If(x) - vm(x)I < cEmq(D(q)) ( m )1 - cm-2 < x < 1. 

Similarly, when f E Cp[-1, 1], we can derive the analogue of Theorem 2' 

with w02(eI; mi) replaced by Em-q 

Theorem 3'. Under the hypotheses of Theorem 2', for all integers m sufficiently 
large there exists a sequence of algebraic polynomials Vm (x) such that 

(2.10') If(X)-Vm(x) <? cEmq ( ) X) (p X -1 < x < 1, 

if q < 2p (p > 0), and 

(2.11') If(X)-Vm(X)I < cEmmq (; (vq) ) 
1 

- <2) x < 

when q > 2p + 1. Furthermore, in this latter case, when p > 0, we have 

(2.12') If(X) - Vm(X)l < CEm-q(()) ( m ) , 1-cm-2 < ixi < 1. 
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Corollary 2. If in Theorems 2 and 2' we assume q > p > 0, then we have 

(2.13) lIf 1 vmIIoo ? c I_f - Vmlloo < C 

respectively, where q* = min{q, 2p}. 

Remark 1. Given a general function f E CP [-1, 1], p > 1, for the best uni- 
form approximation polynomial v* (x), of degree m, we have the following 
bound (see [20]): 

1 1t-v* 1 cEm -P(f(P) ) 

Corollary 2 states that when f E Cq[- 1, 1] or f E C[-1, 1],with q > p > 0, 
our polynomials vm(x) defined in Theorems 3 and 3' satisfy the even better 
bound (2.13). Actually, if q > 2p, we have Ilf - vm1I2 = o(m-2P). This 
result allows us to derive corresponding uniform error estimates for sequences 
of Lagrange interpolation polynomials. In particular, given a sequence of sets 
of m distinct nodes {X(m), x(m) X(m)}, m = 1, 2, ...,and denoting by 
IILm the Lebesgue constant associated with each set, i.e., 

IILmIl = max IILm(f)IIko, 
lIf 1100=1 

where Lm (f) _ Lm (f; x) is the (m - 1 )st-degree Lagrange polynomial, we 
have 

lif-Lm(f)IIoo < (liLmil + l)jIf-vmIloo. 
If we consider sets of nodes with optimal-order Lebesgue constants (IlLmll = 

O(logm)), we obtain 

Ilf -Lm(f)Iloo < c logmllf - Vmlloo. 

We recall that examples of such sets of nodes are the zeros of classical Jacobi 
polynomials P(, 4)(x), with a, /J < -I, the Clenshaw abscissas {cos 4k 
k = 0, 1, ... , m - 1}, and the extensions of the zeros of Jacobi polynomials 
recently introduced in [3, 9]. 

3. L'-ERROR BOUNDS AND QUADRATURE ERRORS 

Using some of the estimates presented in the previous section, in the next two 
theorems we derive bounds for some corresponding weighted LI -polynomial 
approximations. These bounds will be needed to obtain convergence error esti- 
mates for our product formulas. 

First we consider the case Ik(x, y)I < clx - -1 < v < 0 . 

Theorem4. Let feC[-1, 1], p>0, q>2p+2+2v, -1 <v<O. Then 
the polynomial vm(x) defined in Theorem 3' satisfies the inequality 

1 

l f(X) -Vm(X)l Ix I-ylv dx 

(3.1) j< |M2p+2+2vEm-q( ) if IYI < 1, 

M 2p+2Em-q(( if-1 < cl < y < c2 <1, 

where ??(x) = (1 - x2)q-Pf(x). 
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Proof. For simplicity we consider only the case -1 < y < 1 . First we decom- 
pose the integral in (3.1) as follows: 

I m-2 1-m-2 

Ix - ylIlf(x) - Vm(X)l dx = j + / + j =2II + I2 + I3. 
-1 -1 -1 ~~~~~~+m-2 1-m-2 

To bound I1, we use ( 2.12'): 

,-q C -(q) 
I' < C mg(p X Ix - ylIdx <m2p+2+2v Em-q().D 

Inserting ( 2. 1 1' ) into I2 and using an argument similar to the one near the end 
of the proof of Corollary 1, we get 

I2? Eme,C) J( -X2 + M-l)2p-lx - ylv dx; 

hence, recalling [2, Lemma 1]6, we obtain (3.1). The treatment of I3 is analo- 
gous to that of I,. El 

Theorems 5 and 6 below generalize corresponding results presented in [2, 14] 

in two ways. First, they apply to the more general function f(x) E C [-l, 1], 
and second, by adding to the Jacobi abscissas appropriate extra nodes, they allow 
the choice of any a, ,B > - 1 (in [2, 14] we have the condition - 1 < a , < 3). 

We denote by 

m 

(3.2) Lm, o, o (f; x) = lm, k (X)f(Xk) 
k=I 

the (m - 1)st-degree Lagrange polynomial which interpolates the function f(x) 

at the zeros {Xk--Xm, ('/f)}, -1 < X1 < X2 < ... < Xm < 1, of the (orthonormal) 

Jacobi polynomial P,t 4) (x). Furthermore, having chosen, for example (see 
[9]), s equidistant nodes {yi} in [-1, xl) and r equidistant nodes {zj} in 
(xm, 1], we denote by 

Lm,r,,s(f; x) As (x)Br (X)Zl m,k (x) f(k 

k=1 As(Xk)Br(Xk) 

(3.3) ~~~+ Bro )m () 1 p ,/1; 

+ As( )m ))r (As p 1;) x) 

where 
s r 

As(x) = fl(x -yi), Br(X) = Jl(x- zj), 
i=l j=l 

6Wehave p- +1+ v<0. 
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the Lagrange polynomial of degree m + r + s - 1 which interpolates the function 
f(x) at the new set of nodes 

-1 < YI < ..< Ys < XI < X2 < ***< Xm < ZI < < Zr <_1 

In (3.3), Ls (g; x) and Lr(g; x) are the Lagrange polynomials which interpo- 
late the function g at the abscissas {y1} and {zj}, respectively. 

Theorem 5. Let fECH[-l, 1], with p > O and q > 2p + 2 + 2v. If in (3.3) 
we assume r > 0, s > 0 such that 

- 2v<2r- a, 2s-/3< v, 

then we have 

] If(x) - Lm,r,s(f ; x)l Ix - ylv dx 

(3.4) Em-q- I (;(q)) l1g m if IYI < 1, 
<C M2p+2 

(1 if - 1 < Cl?Y?C2 <1 

Proof. For simplicity we consider only the case -1 < y < 1 . Furthermore, 
since Lm,o,o(f; x) can be considered as a special case of Lm,r,s(f; x), we 
will refer only to this latter. 

Since the interpolation operator Lm r s reproduces polynomials of degree 
m - 1 , we can write 

j If(x) - Lm,r ,s(f; x)I Ix -ylv dx 

<?1 If(x) - vm(x)l Ix- yl dx + j ILm,r,s(f- Vm; x)l Ix- ylv dx, 

where vm(x) is the polynomial of degree m - 1 defined in Theorem 3'. A 
bound for the first integral on the right-hand side is given in Theorem 4; the 
last integral needs some more work. 

For any x E [-1, 1], let xc = xc(x) be the Jacobi node closest to x. Then 
write 

(3.5) Lm,r,s(f-vm; x) =PI +P2+P3+P4 

with 

PI = A (x)B (x) (x) f(xc) - vm(xc) 
As (xc)Br (Xc) 

m f(Xk) Vmn(Xk) 
P2 = As(x)Br(X) E lm,k(X) As(Xk)Br(Xk) 

k= 1 k,k$cA(kB(k 

P3 = Br(X)P'm P(x)Ls (B a ) ; 

P4 = As(x)Pm 4((X)Lr (f ; x).- 



736 GIUSEPPE MASTROIANNI AND GIOVANNI MONEGATO 

Before proceeding further, we recall the following bounds, where here and be- 
low C denotes a suitable positive constant taking different values on different 
occurrences: 

(3.6) c < As(Xk) <1 c < r(Xk) <1 
(l?+Xk)s - (l -Xk)r - 

(3.7) Ilm,c(x)l < C (see [15, proof of Theorem 33, p. 171]), 

(1 -x)a/2+3/4(1 + X)fl/2+3/4 IP( f)(X)I 
(3.8) I1ml,k(X)I?<_C MIX -XklIj ,X k V- c 

(see [2, p. 225]) 

(3.9) IAs(x)I < C( 1 )2s, Br(X) C( + m-l)2r, 

(3.10) IP (x)I < C( + M-1)-a-1/2(1 m+ M-()-f1-1x2 

(see [16, p. 673]), 

(3.11) i=1 | $x - Yi Cm2s2(VI + m-1)2s-2 

(3.12) fJ xZ|< Cm2r2( ml)2r2 

Pi = As(X)B(X)lj (X) A (xc)Bi(xc) 

after noticing that IA (X ?gl) C,X recalling (3.7) and ( 2.11'), we obtain 

Em-q- ( ( ) 1- 

<cEmq-l4@ ( 1 2m1) P -1 _<x< 1; 

hence 

(3.13) J IPIIxI- dx <Cm2 X2v Em.q ((q)) 

In the case of F2, by (3.6), (3.8), (3.9), (3.10), and ( 2. 1' ) we have 

P21 < C(I 1 CE+m- -1 /2+2r( 1+x?mq)fl/2+2 

<Em-q-1 < x)< (1 + Xk)f/2+3/4s-/2+P( - 

Mqk=1 ,k$c mIx-xkI 

The latter sum can be bounded by 

C|m (1 + Xk)12+314-s-q2+p 
m 

(1-Xk)a/2+3/4rqP2+p] 
[ kmIx-xkl k=1,kc mIx-xkl 
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Break the interval of integration in two parts: one from -1 to 0, the other from 
O to 1, and consider the corresponding two integrals7. By applying Lemmas 
5 and 1 in [2], and examining all possible combinations of the expressions 
involved, we obtain 

[1-I logi E 
1-IP21 Ix - yl dx < CM2p+2+2v Em-q- 

To bound P3, we first note that by (3.1 1) we have 

Ls (fB p ; x) < Cm2s-2( 1+x + m-1)2s2 If ( (1 ) - (Yi)I 

then, recalling (3.9) and (2.12'), we obtain 

Em ((q)) 
P3?<C Em21 M2s5/2fl (?1(- X+m- I)2r-a-1/2(1+ X+m-1)2S-fl-5/2 

since it is well known (see [16]) that Pm, 4)(x) m#+112 when -1 < x < 
-1 + Cm-2. Finally, by applying Lemma 1 in [2], we derive 

[1DI logi E 
IP31 Ix -ylv dx < Cm2p+2+2v Em-q- 

The treatment of P4 is very similar and leads to the same bound. El 
A second application of the results obtained in ?2 is to the discretization 

of integrals of form (1.2) appearing in certain classes of Mellin convolution 
equations with k(x, y) = k* ( ) I , where k*(.) is bounded. For examples 
of integral equations with kernels of this type, see for instance [1, 7, 13]. 

In this case we consider integration rules based on Lm, r, s (f; x) with r > 1 
and Zr = 1. The proof of the following theorem is very similar to that of 
Theorem 5, with v = 0 and the results of Theorem 3' replaced by those of 
Theorem 3. We need only assume p > 1 and recall that now Br(x) has the 
factor (1 - x), which cancels the corresponding one in the denominator of 
k(x, y), and that f(Zr) - Vm(Zr) = 0 (see (2.12)). Indeed, PI, P2, P3, and P4 
all have the factor ( 1 - x) . 

Theorem 6. Let f E Cq[-1, 1], with p > 1 and q > 2p + 1. If in (3.3) we 
choose r > 1, s > 0 such that 

3 
+q > 2s-/3 > -2 and 2r-a< - 

2 2 2' 

and Zr = 1, then we have 

j Ik(x, y)llf(x) - Lm,r,s(f; x)l dx < C n Em-q-I((D(q)) 

Remark 2. In Theorem 6 we have made the hypothesis p > 1 . However, similar 
results can be obtained under the weaker condition p > 0 if we are willing to 
use Theorem 2 and assume w02(ID(q); 3) < Mji, -p < A < 2. In particular, we 
would obtain a bound of the form O(log m/m2P+2A) . 

Some numerical evidence for the convergence results reported in Theorems 
5 and 6 can be found in [12] and [10], respectively. 

7Since Pm, ' (-x) = (-l)mpP 'X(x), it is sufficient to consider only one of the two integrals; 
the other will be similar, with a and ,B interchanged. 
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